• Users Online: 565
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
Year : 2020  |  Volume : 5  |  Issue : 1  |  Page : 19-22

Sex determination by maxillary sinus dimensions using cone-beam computed tomography and discriminant function: An analytical study

Department of Oral Medicine and Radiology, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur, Maharashtra, India

Correspondence Address:
Dr. A Vidyarjan Sukhadeve
Department of Oral Medicine and Radiology, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur, Maharashtra
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijfo.ijfo_8_20

Rights and Permissions

Background: Sex determination of unknown persons plays an important role in forensic medicine. Zygomatic bone and maxilla remain intact although the skull and other bones may be badly disfigured in victims who are incinerated. Cone-beam computed tomography (CBCT) is an excellent radiographic modality for accurate measurement of the maxillary sinus (MS) dimensions. Aim: To determine sex by MS measurements using CBCT scans and discriminant function. Objectives: To measure and compare the MS dimensions in males and females. Materials and Methods: Sixty CBCT scans showing bilateral MSs of 30 males and 30 females were retrieved and evaluated. The parameters such as width, length, and height were measured and recorded. The data were analyzed using unpaired t-test and discriminant function analysis to assess sexual dimorphism. Results: Statistically significant differences are observed between males and females in respect to the MS height and length on both the right and left MSs, whereas statistically significant difference is observed in respect to width only on the right MS. The accuracy rate of sex determination was 73% in males and 69% in females, with overall accuracy of 71%. The most pronounced parameter in differentiation of sex is the MS height. The discriminant equations are derived for both right and left MSs. Conclusion: MS dimensions can be used as an aid in forensic anthropology for the determination of sex. MS height is found to be the most predictive parameter in sex determination. The prediction from the derived discriminant equations is found accurate ≥80% for both sexes and both right and left MSs.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded502    
    Comments [Add]    

Recommend this journal